PTMagic/Core/Helper/EncryptionHelper.cs

328 lines
12 KiB
C#
Raw Permalink Normal View History

2018-05-22 10:11:50 +02:00
using System;
using System.Collections.Generic;
using System.Linq;
using System.IO;
using System.Text;
using System.Security.Cryptography;
using System.Collections.Specialized;
using System.Configuration;
namespace Core.Helper
{
public class EncryptionHelper
{
2018-05-22 10:11:50 +02:00
#region Properties
public static string CryptoMainSaltValue
{
get
{
2018-05-22 10:11:50 +02:00
return "b3+Pz.~L<R 8NH-p=Ze<smbpb*]dP,%d9d{P{DC)R$xf]s|6UC-d)X[y_kDR^EsL";
}
}
public static string CryptoSaltValue
{
get
{
2018-05-22 10:11:50 +02:00
return "/-T:_~Z|j~0%@~|?7,L~]:us9-=VO[.0V[nZDYTjnUeHcka#hdQ{U^YHv:0sJlfk";
}
}
public static string CryptoInitVector
{
get
{
2018-05-22 10:11:50 +02:00
return "qWEE:ADg)}6b;V{B";
}
}
public static string CryptoPassPhrase
{
get
{
2018-05-22 10:11:50 +02:00
return "KUBD`o.]*#CCL n9m}tZN4B4~>2EK>((/xnTbWdTo:/5_$hq8ja8yOq% j}M6zTM";
}
}
#endregion
#region Methoden
#region Passwortverschlüsselung
public static string CreateHash(string password, string randomSalt)
{
2018-05-22 10:11:50 +02:00
// Generate a random salt
byte[] salt = Encoding.UTF8.GetBytes(EncryptionHelper.CryptoMainSaltValue + randomSalt);
byte[] hash = PBKDF2(password, salt, 64000, 24);
return Convert.ToBase64String(hash);
}
public static bool SlowEquals(string aHash, string bHash)
{
2018-05-22 10:11:50 +02:00
byte[] a = Encoding.UTF8.GetBytes(aHash);
byte[] b = Encoding.UTF8.GetBytes(bHash);
uint diff = (uint)a.Length ^ (uint)b.Length;
for (int i = 0; i < a.Length && i < b.Length; i++)
{
2018-05-22 10:11:50 +02:00
diff |= (uint)(a[i] ^ b[i]);
}
return diff == 0;
}
private static byte[] PBKDF2(string password, byte[] salt, int iterations, int outputBytes)
{
using (Rfc2898DeriveBytes pbkdf2 = new Rfc2898DeriveBytes(password, salt))
{
2018-05-22 10:11:50 +02:00
pbkdf2.IterationCount = iterations;
return pbkdf2.GetBytes(outputBytes);
}
}
#endregion
#region Standardverschlüsselung
public static string Encrypt(string plainText)
{
2018-05-22 10:11:50 +02:00
return Encrypt(plainText, EncryptionHelper.CryptoPassPhrase, EncryptionHelper.CryptoSaltValue, "SHA512", 2, EncryptionHelper.CryptoInitVector, 256);
}
public static string Decrypt(string cipherText)
{
2018-05-22 10:11:50 +02:00
return Decrypt(cipherText, EncryptionHelper.CryptoPassPhrase, EncryptionHelper.CryptoSaltValue, "SHA512", 2, EncryptionHelper.CryptoInitVector, 256, true);
}
public static string Encrypt(string plainText, string passPhrase)
{
2018-05-22 10:11:50 +02:00
return Encrypt(plainText, passPhrase, EncryptionHelper.CryptoSaltValue, "SHA512", 2, EncryptionHelper.CryptoInitVector, 256);
}
public static string Decrypt(string cipherText, string passPhrase)
{
2018-05-22 10:11:50 +02:00
return Decrypt(cipherText, passPhrase, EncryptionHelper.CryptoSaltValue, "SHA512", 2, EncryptionHelper.CryptoInitVector, 256, true);
}
/// <summary>
/// Encrypts specified plaintext using Rijndael symmetric key algorithm
/// and returns a base64-encoded result.
/// </summary>
/// <param name="plainText">
/// Plaintext value to be encrypted.
/// </param>
/// <param name="passPhrase">
/// Passphrase from which a pseudo-random password will be derived. The
/// derived password will be used to generate the encryption key.
/// Passphrase can be any string. In this example we assume that this
/// passphrase is an ASCII string.
/// </param>
/// <param name="saltValue">
/// Salt value used along with passphrase to generate password. Salt can
/// be any string. In this example we assume that salt is an ASCII string.
/// </param>
/// <param name="hashAlgorithm">
/// Hash algorithm used to generate password. Allowed values are: "MD5" and
/// "SHA1". SHA1 hashes are a bit slower, but more secure than MD5 hashes.
/// </param>
/// <param name="passwordIterations">
/// Number of iterations used to generate password. One or two iterations
/// should be enough.
/// </param>
/// <param name="initVector">
/// Initialization vector (or IV). This value is required to encrypt the
/// first block of plaintext data. For RijndaelManaged class IV must be
/// exactly 16 ASCII characters long.
/// </param>
/// <param name="keySize">
/// Size of encryption key in bits. Allowed values are: 128, 192, and 256.
/// Longer keys are more secure than shorter keys.
/// </param>
/// <returns>
/// Encrypted value formatted as a base64-encoded string.
/// </returns>
public static string Encrypt(string plainText,
string passPhrase,
string saltValue,
string hashAlgorithm,
int passwordIterations,
string initVector,
int keySize)
{
2018-05-22 10:11:50 +02:00
// Convert strings into byte arrays.
byte[] initVectorBytes = Encoding.UTF8.GetBytes(initVector);
byte[] saltValueBytes = Encoding.UTF8.GetBytes(saltValue);
// Convert our plaintext into a byte array.
// Let us assume that plaintext contains UTF8-encoded characters.
byte[] plainTextBytes = Encoding.UTF8.GetBytes(plainText);
// First, we must create a password, from which the key will be derived.
// This password will be generated from the specified passphrase and
// salt value. The password will be created using the specified hash
// algorithm. Password creation can be done in several iterations.
PasswordDeriveBytes password = new PasswordDeriveBytes(passPhrase, saltValueBytes, hashAlgorithm, passwordIterations);
// Use the password to generate pseudo-random bytes for the encryption
// key. Specify the size of the key in bytes (instead of bits).
byte[] keyBytes = password.GetBytes(keySize / 8);
// Create uninitialized Rijndael encryption object.
RijndaelManaged symmetricKey = new RijndaelManaged();
// It is reasonable to set encryption mode to Cipher Block Chaining
// (CBC). Use default options for other symmetric key parameters.
symmetricKey.Mode = CipherMode.CBC;
// Generate encryptor from the existing key bytes and initialization
// vector. Key size will be defined based on the number of the key
// bytes.
ICryptoTransform encryptor = symmetricKey.CreateEncryptor(keyBytes, initVectorBytes);
// Define memory stream which will be used to hold encrypted data.
MemoryStream memoryStream = new MemoryStream();
// Define cryptographic stream (always use Write mode for encryption).
CryptoStream cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write);
// Start encrypting.
cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);
// Finish encrypting.
cryptoStream.FlushFinalBlock();
// Convert our encrypted data from a memory stream into a byte array.
byte[] cipherTextBytes = memoryStream.ToArray();
// Close both streams.
memoryStream.Close();
cryptoStream.Close();
// Convert encrypted data into a base64-encoded string.
string cipherText = Convert.ToBase64String(cipherTextBytes);
// Return encrypted string.
return cipherText;
}
/// <summary>
/// Decrypts specified ciphertext using Rijndael symmetric key algorithm.
/// </summary>
/// <param name="cipherText">
/// Base64-formatted ciphertext value.
/// </param>
/// <param name="passPhrase">
/// Passphrase from which a pseudo-random password will be derived. The
/// derived password will be used to generate the encryption key.
/// Passphrase can be any string. In this example we assume that this
/// passphrase is an ASCII string.
/// </param>
/// <param name="saltValue">
/// Salt value used along with passphrase to generate password. Salt can
/// be any string. In this example we assume that salt is an ASCII string.
/// </param>
/// <param name="hashAlgorithm">
/// Hash algorithm used to generate password. Allowed values are: "MD5" and
/// "SHA1". SHA1 hashes are a bit slower, but more secure than MD5 hashes.
/// </param>
/// <param name="passwordIterations">
/// Number of iterations used to generate password. One or two iterations
/// should be enough.
/// </param>
/// <param name="initVector">
/// Initialization vector (or IV). This value is required to encrypt the
/// first block of plaintext data. For RijndaelManaged class IV must be
/// exactly 16 ASCII characters long.
/// </param>
/// <param name="keySize">
/// Size of encryption key in bits. Allowed values are: 128, 192, and 256.
/// Longer keys are more secure than shorter keys.
/// </param>
/// <returns>
/// Decrypted string value.
/// </returns>
/// <remarks>
/// Most of the logic in this function is similar to the Encrypt
/// logic. In order for decryption to work, all parameters of this function
/// - except cipherText value - must match the corresponding parameters of
/// the Encrypt function which was called to generate the
/// ciphertext.
/// </remarks>
public static string Decrypt(string cipherText,
string passPhrase,
string saltValue,
string hashAlgorithm,
int passwordIterations,
string initVector,
int keySize,
bool doDecrypt)
{
if (doDecrypt)
{
2018-05-22 10:11:50 +02:00
// Convert strings defining encryption key characteristics into byte
// arrays.
byte[] initVectorBytes = Encoding.UTF8.GetBytes(initVector);
byte[] saltValueBytes = Encoding.UTF8.GetBytes(saltValue);
// Convert our ciphertext into a byte array.
byte[] cipherTextBytes = Convert.FromBase64String(cipherText);
// First, we must create a password, from which the key will be
// derived. This password will be generated from the specified
// passphrase and salt value. The password will be created using
// the specified hash algorithm. Password creation can be done in
// several iterations.
PasswordDeriveBytes password = new PasswordDeriveBytes(passPhrase, saltValueBytes, hashAlgorithm, passwordIterations);
// Use the password to generate pseudo-random bytes for the encryption
// key. Specify the size of the key in bytes (instead of bits).
byte[] keyBytes = password.GetBytes(keySize / 8);
// Create uninitialized Rijndael encryption object.
RijndaelManaged symmetricKey = new RijndaelManaged();
// It is reasonable to set encryption mode to Cipher Block Chaining
// (CBC). Use default options for other symmetric key parameters.
symmetricKey.Mode = CipherMode.CBC;
// Generate decryptor from the existing key bytes and initialization
// vector. Key size will be defined based on the number of the key
// bytes.
ICryptoTransform decryptor = symmetricKey.CreateDecryptor(keyBytes, initVectorBytes);
// Define memory stream which will be used to hold encrypted data.
MemoryStream memoryStream = new MemoryStream(cipherTextBytes);
// Define cryptographic stream (always use Read mode for encryption).
CryptoStream cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read);
// Since at this point we don't know what the size of decrypted data
// will be, allocate the buffer long enough to hold ciphertext;
// plaintext is never longer than ciphertext.
byte[] plainTextBytes = new byte[cipherTextBytes.Length];
// Start decrypting.
int decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
// Close both streams.
memoryStream.Close();
cryptoStream.Close();
// Convert decrypted data into a string.
// Let us assume that the original plaintext string was UTF8-encoded.
string plainText = Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount);
// Return decrypted string.
return plainText;
}
else
{
2018-05-22 10:11:50 +02:00
return "";
}
}
#endregion
#endregion
}
}